FS-2W Series

Features

- Small Footprint
- In-Out Isolation Voltage 3000 VDC
- ★ 7 PIN SIP Package
- **★** Temperature Range:-40°C to +85°C
- ★ UL94V-0 Inflaming retarding package
- **★** MTBF>1million hours(25°C)

Applications

The F_S-2W Series are specially designed for application where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to where:

- 1) Input voltage variation ≤ ±10%;
- 2) 3000 VDC input and output isolation;
- 3) Regulated and low ripple noise is not demanding.

Model Detail List Specification

Model	Input Voltage range (nominal voltage)	Output Voltage	Output Current (mA)		Input Current Full load.(mA)		Efficiency	Max. Capacitive
Number			Min.	Max.	Max.	No.		Load
F0505S-2W		5.0V	40	400	493		81%	
F0509S-2W	4.5~5.5VDC	9.0V	22	222	481	40	83%	
F0512S-2W	(5 VDC)	12.0V	16	167	477	40	84%	
F0515S-2W		15.0V	13	133	469		85%	
F1205S-2W		5.0V	40	400	203		82%	
F1209S-2W	10.8~13.2VDC	9.0V	22	222	200	36	83%	400
F1212S-2W	(12 VDC)	12.0V	16	167	198	30	84%	400
F1215S-2W		15.0V	13	133	195		85%	
F2405S-2W		5.0V	40	400	101		82%	
F2409S-2W	21.6~26.4VDC	9.0V	22	222	99	24	84%	
F2412S-2W	(24 VDC)	12.0V	16	167	98		85%	
F2415S-2W		15.0V	13	133	96		86%	

1. Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against over-current and short-circuits. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

2. Output Voltage Regulation and Over-voltage Protection Circuit

Model test Circuit

FS-2W Series

Output Specifications

Item	Test Conditions		Min.	Тур.	Max.	Unit	
Output Power		0.1		2	w		
Line Voltage Regulation	For Vin change of ±1%				±1.5		
		5V output		10	15	%	
Lood namidation	10% to 100% load	12V output		8	15		
Load regulation		15V output		6	15		
		24V output		6	15		
Ripple	20MHz	Output voltage ≤12V		50		ma\/m m	
Noise	Bandwidth	others		75		mVp-p	
Temperature Drift 100% full load				±0.03	%/°C		
Input Filter			C Filter	r			

Environmental Specifications

Item	Test Conditions	Min.	Тур.	Max.	Unit
Storage Humidity	Non condensing			95	%
Temp. rise at full load			25		
Operating Temperature		-40		+85	°C
Storage Temperature	Power derating (above 85℃)	-55		+125	C
Soldering Temperature	1.5mm from case for 10 seconds			300	
Cooling		Free air convection			

Common Specifications

Item	Test Conditions	Min.	Тур.	Max.	Unit
Isolation Voltage	Tested for 1 minute and leakage	3000			VDC
	current less than 1 mA				
Switching Frequency	Full load, nominal input		100	300	KHz
MTBF	MIL-HDBK-217F@25℃	1000			K hours
Isolation Resistance	Test at 500VDC	1000			MΩ
Weight			2.5		g

Input Specifications

Item	Test Conditions	Min.	Тур.	Max.	Unit
	5 VDC Input (4.5~5.5V)			6	
Input Max. voltage	12 VDC Input (10.8~13.2V)			14.4	
	24 VDC Input (21.6~26.4V)			28.8	\/D0
Input surge voltage	5 VDC Input (4.5~5.5V)	-0.8		10	VDC
	12 VDC Input (10.8~13.2V)	-0.8		20	
(1 sec. Max.)	24 VDC Input (21.6~26.4V)	-0.8		32	

Product typical Curve

Efficiency VS Output Voltage curve
(Vin=Vin-nominI)

Output Load VS Efficiency curve (Vin=Vin-nominal)

Efficiency VS Output Load curve (Vin=Vin-nominal)

FS-2W Series

Recommended Footprint Mechanical Dimensions &

Note: Grid 2.54*2.54mm.

Unit: mm

General tolerances: 0.20mm

Package	Vin	GND	0 V	+Vo	NC
FS	1	2	5	7	<u>ette</u>

Tolerance Envelope Curve & **Temperature Derating Graph**

EMC Recommended Circuit

