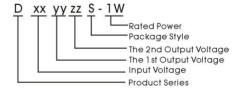

DS-1W Series

Features

- Small Footprint
- ★ Isolation Voltage 1000 VDC
- ★ 7 PIN SIP Package
- **★** Temperature Range:-40°C to +85°C
- ★ UL94V-0 Inflaming retarding package
- **★** MTBF>1million hours(25°C)
- High Efficiency up to 80%



Applications

The D_S-1W Series are specially designed for application where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to where:

- 1. Input voltage variation $\leq \pm 10\%$
- 2. Input and output isolation voltage ≤ 1000 VDC
- 3. Where the regulation of the output voltage and the output ripple noise are not demanding.

Model Detail List Specification

range		Output			Input Current Full load.(mA)		Efficiency	Max. Capacitive
Number	(nominal voltage)	Voltage	Min.	Max.	Max.	No.		Load(µF)
D050505S-1W		5.0;5.0V	10;10	100;100	136		73%	
D050909S-1W	4.5~5.5VDC	9.0;9.0V	5;5	56;56	132	20	76%	
D051212S-1W	(5 VDC)	12.0;12.0V	4;4	42;42	130	28	77%	
D051515S-1W		15.0;15.0V	3;3	33;33	126		78%	
D120505S-1W		5.0;5.0V	10;10	100;100	55		75%	
D120909S-1W	10.8~13.2VDC	9.0;9.0V	5;5	56;56	52	24	80%	100
D121212S-1W	(12 VDC)	12.0;12.0V	4;4	42;42	51	24	82%	100
D121515S-1W		15.0;15.0V	3;3	33;33	49		83%	
D240505S-1W		5.0;5.0V	10;10	100;100	27		75%	
D240909S-1W	21.6~26.4VDC	9.0;9.0V	5;5	56;56	26	16	78%	
D241212S-1W	(24 VDC)	12.0;12.0V	4;4	42;42	26	10	80%	
D241515S-1W		15.0;15.0V	3;3	33;33	25		82%	

- 1. Under normal operating conditions, the output circuit of these products has no protection against over-current and short-circuits. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit. It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output that provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor.
- The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series.

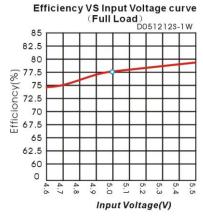
DS-1W Series

Output Specifications

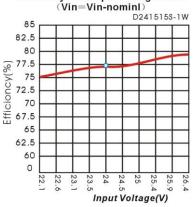
Item	Test Conditions		Min.	Тур.	Max.	Unit	
Output Power			0.1		1	w	
Line Voltage Regulation	Voltage Regulation For Vin change of ±1%				±1.5		
		5V output		10			
Load regulation	10% to 100% load	9V output		8.3		%	
		12V output		6.8			
		15V output		6.3			
Ripple	20MHz Bandwidth			50		m\/n n	
Noise				75		mVp-p	
Temperature Drift	100% full load		±0.03		±0.05	%/°C	
Input Filter			C Filter				

Environmental Specifications

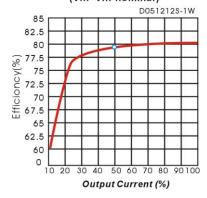
Item	Test Conditions	Min.	Тур.	Max.	Unit
Storage Humidity	Non condensing			95	%
Temp. rise at full load			25		
Operating Temperature	Power derating (above 85℃)	-40		+85	°C
Storage Temperature		-55		+125	C
Soldering Temperature	1.5mm from case for 10 seconds			300	
Isolation Capacitance			150		pF
Cooling		Free air convection			n

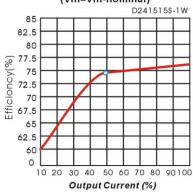

Common Specifications

Item	Test Conditions	Min.	Тур.	Max.	Unit
Isolation Voltage	Tested for 1 minute and				VDC
	leakage current less than 1 mA				
Switching Frequency	Full load, nominal input		100		KHz
MTBF	MIL-HDBK-217F@25℃	1000			K hours
Isolation Resistance	Test at 500VDC	1000			MΩ
Weight			2.0		g

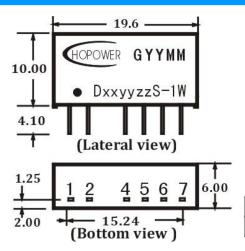

Input Specifications

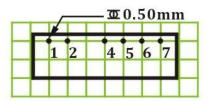
Item	Test Conditions Min. Typ. M		Max.	Unit	
	5 VDC Input (4.5~5.5V)			6	
Input Max. voltage	12 VDC Input (10.8~13.2V)			15	
	24 VDC Input (21.6~26.4V)			28	\/D0
	5 VDC Input (4.5~5.5V)			9	VDC
Input surge voltage	12 VDC Input (10.8~13.2V)			18	
(1 sec. Max.)	24 VDC Input (21.6~26.4V)			30	


Product typical Curve


Efficiency VS Output Voltage curve

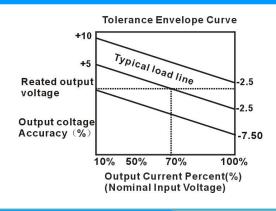
Output Load VS Efficiency curve (Vin=Vin-nominal)

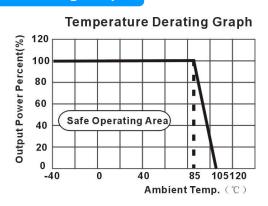

Efficiency VS Output Load curve (Vin=Vin-nominal)



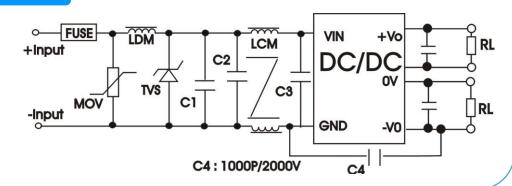
DS-1W Series

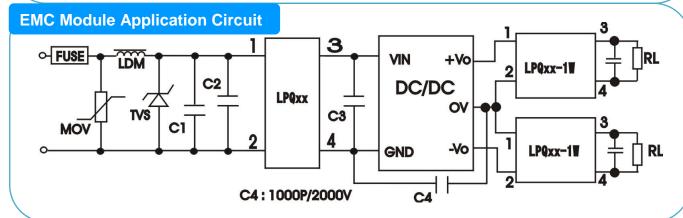
Mechanical Dimensions & Recommended Footprint


Note: Grid 2.54*2.54mm


Unit: mm

General tolerances: 0.20mm


Package	Vin	GND	0V1	+Vo 1	0V2	+Vo2	NC
DS	1	2	4	5	6	7	-


Tolerance Envelope Curve & Temperature Derating Graph

EMC Recommended Circuit

