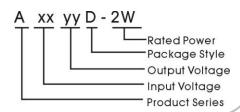
AD-2W Series

Features

- Small Footprint
- ★ In-Out Isolation Voltage 1000 VDC
- ★ 14 PIN DIP Package
- ★ Temperature Range:-40°C to +85°C
- UL94V-0 Inflaming retarding package
- **★** MTBF>1million hours(25°C)

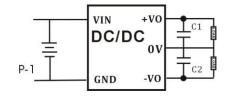


Applications

The A_D-2W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to where:

- 1) 1000 VDC input and output isolation;
- 2) Input voltage variation ≤ ±10%;
- 3) Regulated and low ripple noise is not required.

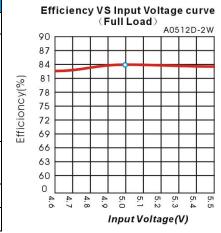

Model Detail List Specification

Model	Input Voltage range (nominal voltage)	Output Voltage	Output Current (mA)		Input Current full load. (mA)		Efficiency	Max. Capacitive		
Number			Min.	Max.	Max.	Min.		Load(µF)		
A0505D-2W		±5.0V	±20	±200	271		82%			
A0509D-2W	4.5~5.5VDC	±9.0V	±11	±111	267	40	83%			
A0512D-2W	(5 VDC)	±12.0V	±8	±83	263	40	84%			
A0515D-2W		±15.0V	±7	±67	262		85%			
A1205D-2W		±5.0V	±20	±200	112		82%			
A1209D-2W	10.8~13.2VDC	±9.0V	±11	±111	111	36	83%	200		
A1212D-2W	(12 VDC)	±12.0V	±8	±83	109	30	84%	200		
A1215D-2W		±15.0V	±7	±67	109		85%			
A2405D-2W		±5.0V	±20	±200	55		83%			
A2409D-2W	21.6~26.4VDC	±9.0V	±11	±111	55	24	84%			
A2412D-2W	(24 VDC)	±12.0V	±8	±83	54	24	24	24	85%	
A2415D-2W		±15.0V	±7	±67	54		86%			

1. Overload Protection

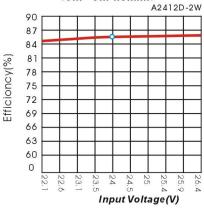
Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

Model test circuit


AD-2W Series

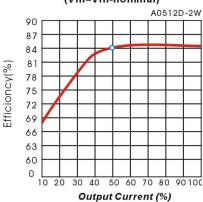
Output Specifications

Item	Test Conditions		Min.	Тур.	Max.	Unit
Output Power		0.2		2	w	
Line Voltage Regulation	/oltage Regulation For Vin change of ±1%				±1.5	
Load regulation	10% to 100% load	5V output		10	15	%
		12V output		8	15	
		15V output		6	15	
		24V output		5	15	
Ripple 20MHz Bandwidth			50		m)/m m	
		awiath		75		mVp-p
Temperature Drift	100% full lo	ad			±0.03	%/°C
Input Filter		C Filter				


Product typical Curve

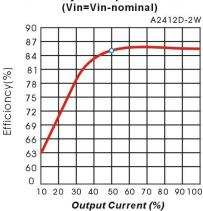
Environmental Specifications

Item	Test Conditions	Min.	Тур.	Max.	Unit	
Storage Humidity	Non condensing			95	%	
Temp. rise at full load			-25			
Operating Temperature		-40		+85	င	
Storage Temperature	Power derating (above 85℃)	-55		+125		
Cooling		Free air convection			n	


Efficiency VS Output Voltage curve (Vin=Vin-nominl)

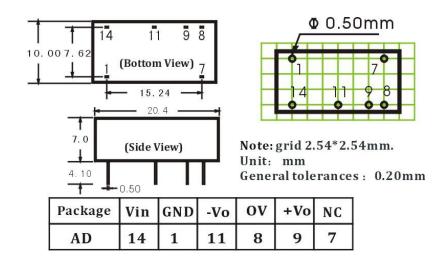
Common Specifications

Item	Test Conditions	Min.	Тур.	Max.	Unit
Isolation Voltage	Tested for 1 minute and leakage current less than 1 mA	1000			VDC
Switching Frequency	Full load, nominal input		100		KHz
MTBF	MIL-HDBK-217F@25℃	1000			K hours
Isolation Resistance	Test at 500VDC	1000			MΩ
Weight			2.5		g

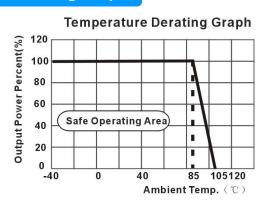

Output Load VS Efficiency curve (Vin=Vin-nominal)

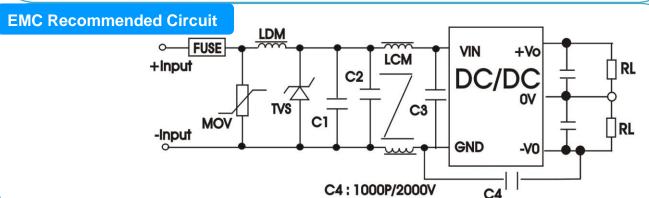
Input Specifications

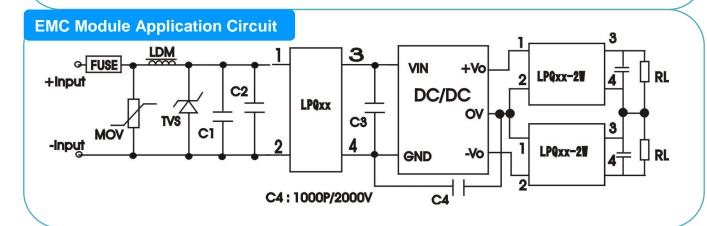
Item	Test Conditions	Min.	Тур.	Max.	Unit
Input Max. voltage	5 VDC Input (4.5~5.5V)			6	
	12 VDC Input (10.8~13.2V)			14.4	
	24 VDC Input (21.6~26.4V)			28.8	\/D0
Input surge voltage (1 sec. Max.)	5 VDC Input (4.5~5.5V)	-0.8		10	VDC
	12 VDC Input (10.8~13.2V)	-0.8		20	
	24 VDC Input (21.6~26.4V)	-0.8		32	


Efficiency VS Output Load curve (Vin=Vin-nominal)


AD-2W Series




Mechanical Dimensions & Recommended Footprint



Tolerance Envelope Curve & Temperature Derating Graph

